ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
R. W. Petzoldt, D. T. Goodin, E. Valmianski, L. C. Carlson, J. Stromsoe, R. K. Friend, J. Hares
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 417-421
IFE Target Design | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-25
Articles are hosted by Taylor and Francis Online.
Various methods for accelerating targets to be injected into an Inertial Fusion Energy (IFE) power plant have been considered such as gas gun, rail gun and electromagnetic induction. One method that could also be used for direct drive targets is electrostatic acceleration.We have been using electrostatic steering to improve target placement accuracy. We optically track the motion of a charged target, and feed back appropriate steering voltage to four steering electrodes. We have also completed fabrication and begun testing of an electrostatic accelerator that advances the electric field each time the charged target passes one of the 96 accelerating electrodes. Many of the accelerating electrodes are segmented to allow transverse position correction based on transverse position measurements during the acceleration process. Calculations indicate that this "first step" accelerator will achieve 10-15 m/s target velocity in 0.9 m with ±4 kV accelerating voltage. Updated target steering results as well as the accelerator design, fabrication, and early experimental results are presented.