ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
R. W. Petzoldt, D. T. Goodin, E. Valmianski, L. C. Carlson, J. Stromsoe, R. K. Friend, J. Hares
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 417-421
IFE Target Design | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-25
Articles are hosted by Taylor and Francis Online.
Various methods for accelerating targets to be injected into an Inertial Fusion Energy (IFE) power plant have been considered such as gas gun, rail gun and electromagnetic induction. One method that could also be used for direct drive targets is electrostatic acceleration.We have been using electrostatic steering to improve target placement accuracy. We optically track the motion of a charged target, and feed back appropriate steering voltage to four steering electrodes. We have also completed fabrication and begun testing of an electrostatic accelerator that advances the electric field each time the charged target passes one of the 96 accelerating electrodes. Many of the accelerating electrodes are segmented to allow transverse position correction based on transverse position measurements during the acceleration process. Calculations indicate that this "first step" accelerator will achieve 10-15 m/s target velocity in 0.9 m with ±4 kV accelerating voltage. Updated target steering results as well as the accelerator design, fabrication, and early experimental results are presented.