ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Lane Carlson, Mark Tillack, Jeremy Stromsoe, Neil Alexander, Dan Goodin, Ronald Petzoldt
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 409-416
IFE Target Design | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8936
Articles are hosted by Taylor and Francis Online.
In the High Average Power Laser (HAPL) program, we have developed an integrated target tracking and engagement system designed to track an inertial fusion energy target traveling 50-100m/s in three dimensions and to steer laser driver beams so as to engage it with ±20 m accuracy from a stand off distance of ~20 meters. The system consists of separate axial and transverse detection techniques to pre-steer individual beamlet mirrors, and a final fine-correction technique using a short-pulse "glint" laser to interrogate the target's position 1-2 ms before the target reaches chamber center.We are working to demonstrate the viability of this concept by conducting a table top engagement demonstration at reduced speeds and distances. Integration of the various components has been completed and hit-on-the-fly experiments are now being conducted. Initial engagement efforts from a simulated driver beam overfilling a falling target yielded a 150-m standard deviation for targets placed ±1.5mm from chamber center. Since then, our efforts have focused on systematically defining and eliminating all sources of error in each component and subsystem. Current engagement accuracy is 42m RMS. The engagement effort and the step-wise improvements realized are reported, as well as the path toward our goal.