ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Lane Carlson, Mark Tillack, Jeremy Stromsoe, Neil Alexander, Dan Goodin, Ronald Petzoldt
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 409-416
IFE Target Design | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8936
Articles are hosted by Taylor and Francis Online.
In the High Average Power Laser (HAPL) program, we have developed an integrated target tracking and engagement system designed to track an inertial fusion energy target traveling 50-100m/s in three dimensions and to steer laser driver beams so as to engage it with ±20 m accuracy from a stand off distance of ~20 meters. The system consists of separate axial and transverse detection techniques to pre-steer individual beamlet mirrors, and a final fine-correction technique using a short-pulse "glint" laser to interrogate the target's position 1-2 ms before the target reaches chamber center.We are working to demonstrate the viability of this concept by conducting a table top engagement demonstration at reduced speeds and distances. Integration of the various components has been completed and hit-on-the-fly experiments are now being conducted. Initial engagement efforts from a simulated driver beam overfilling a falling target yielded a 150-m standard deviation for targets placed ±1.5mm from chamber center. Since then, our efforts have focused on systematically defining and eliminating all sources of error in each component and subsystem. Current engagement accuracy is 42m RMS. The engagement effort and the step-wise improvements realized are reported, as well as the path toward our goal.