ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Lane Carlson, Mark Tillack, Jeremy Stromsoe, Neil Alexander, Dan Goodin, Ronald Petzoldt
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 409-416
IFE Target Design | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8936
Articles are hosted by Taylor and Francis Online.
In the High Average Power Laser (HAPL) program, we have developed an integrated target tracking and engagement system designed to track an inertial fusion energy target traveling 50-100m/s in three dimensions and to steer laser driver beams so as to engage it with ±20 m accuracy from a stand off distance of ~20 meters. The system consists of separate axial and transverse detection techniques to pre-steer individual beamlet mirrors, and a final fine-correction technique using a short-pulse "glint" laser to interrogate the target's position 1-2 ms before the target reaches chamber center.We are working to demonstrate the viability of this concept by conducting a table top engagement demonstration at reduced speeds and distances. Integration of the various components has been completed and hit-on-the-fly experiments are now being conducted. Initial engagement efforts from a simulated driver beam overfilling a falling target yielded a 150-m standard deviation for targets placed ±1.5mm from chamber center. Since then, our efforts have focused on systematically defining and eliminating all sources of error in each component and subsystem. Current engagement accuracy is 42m RMS. The engagement effort and the step-wise improvements realized are reported, as well as the path toward our goal.