ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Y. Nakao, M. Katsube, T. Ohmura, Y. Saito, T. Johzaki, K. Mima
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 401-404
IFE Target Design | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8934
Articles are hosted by Taylor and Francis Online.
The possibility of igniting D3He plasma in the fast-ignition, inertial confinement fusion scheme is discussed. Use of a small amount of DT fuel as an igniter is indispensable in order to mitigate the requirement on driver energy. Simulations have been made for a DT/D3He fuel compressed to 2000 ~ 4000 times the liquid density. The DT igniter is placed at the edge of the compressed fuel. The work shows that it is possible to obtain sufficient pellet gains (100) with realistic driver energy below 10 MJ. The essential roles of DT fusion neutron and nuclear elastic scattering are clarified. The possibility to reduce the amount of DT fuel is discussed.