ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Y. Nakao, M. Katsube, T. Ohmura, Y. Saito, T. Johzaki, K. Mima
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 401-404
IFE Target Design | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8934
Articles are hosted by Taylor and Francis Online.
The possibility of igniting D3He plasma in the fast-ignition, inertial confinement fusion scheme is discussed. Use of a small amount of DT fuel as an igniter is indispensable in order to mitigate the requirement on driver energy. Simulations have been made for a DT/D3He fuel compressed to 2000 ~ 4000 times the liquid density. The DT igniter is placed at the edge of the compressed fuel. The work shows that it is possible to obtain sufficient pellet gains (100) with realistic driver energy below 10 MJ. The essential roles of DT fusion neutron and nuclear elastic scattering are clarified. The possibility to reduce the amount of DT fuel is discussed.