ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Y. Nakao, N. Senmyo, N. Nakamura, H. Matsuura, T. Johzaki, V. T. Voronchev
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 391-394
IFE Target Design | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8932
Articles are hosted by Taylor and Francis Online.
A new method to diagnose the degree of electron degeneracy in compressed fuel for fast-ignition inertial confinement fusion is proposed. We focus on 4.44-MeV -rays emitted in the reaction 9Be(,n)12C governed by fusion-produced energetic alpha-particles in a laser-imploded DT fuel pellet admixed with a small amount of 9B. In this case the compressed fuel pellet is not subjected to any heating laser pulse. We have evaluated the probability P-Be that the + 9Be reaction occurs during the slowing down of -particle. It is found that the reaction probability depends strongly on the degeneracy parameter , which is defined as the ratio of electron temperature to the Fermi energy. We show the possibility of diagnosing the electron degeneracy from the P-Be - diagram by detecting the 4.44-MeV -quanta and DT neutrons emitted from the dense core plasma.