ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Andrew J. Schmitt, J. W. Bates, S. P. Obenschain, S. T. Zalesak, D. E. Fyfe, R. Betti
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 377-383
IFE Target Design | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8930
Articles are hosted by Taylor and Francis Online.
New approaches in target design have increased the possibility that useful fusion power can be generated with sub-MJ lasers. We have performed many 1D and 2D simulations that examine the characteristics of target designs for sub-MJ lasers. These designs use the recently-proposed shock-ignition target scheme, which utilizes a separate high-intensity pulse to induce ignition. A promising feature of these designs is their significantly higher gains at lower energies (one dimensional (1D) gain ~ 100 at Elaser ~ 250kJ) than can be expected for the conventional central ignition scheme. The results of these simulations are shown and we discuss the implications for target fabrication and laser design. Of particular interest are the constraints on the target and laser from asymmetries due to target imperfections and laser imprint.