ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Yanfen Li, Takuya Nagasaka, Takeo Muroga
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 323-327
Fusion Materials | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8922
Articles are hosted by Taylor and Francis Online.
The effects of thermal aging at a temperature range of 823 to 973 K on the mechanical properties and microstructure of JLF-1 and CLAM steels were investigated. The results showed that the hardness increased slightly and the creep properties improved after aging at 823 K for 2000 h, suggesting that strengthening occurred. However, softening took place by aging at 973 K for 100 h. The microstructural observation showed that there was no remarkable growth of lath width and grain size for the aged specimens. According to the microstructure and the model analyses, the increase in the density of precipitates, especially fine Ta-rich particles, are considered to be the main reason for the strengthening due to aging at 823 K for 2000 h. On the other hand, fine TaC precipitates were deduced to be dissolved due to aging at 973 K for 100 h. However, the change in precipitates alone cannot account for the softening occurred due to the aging.