ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Yanfen Li, Takuya Nagasaka, Takeo Muroga
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 323-327
Fusion Materials | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8922
Articles are hosted by Taylor and Francis Online.
The effects of thermal aging at a temperature range of 823 to 973 K on the mechanical properties and microstructure of JLF-1 and CLAM steels were investigated. The results showed that the hardness increased slightly and the creep properties improved after aging at 823 K for 2000 h, suggesting that strengthening occurred. However, softening took place by aging at 973 K for 100 h. The microstructural observation showed that there was no remarkable growth of lath width and grain size for the aged specimens. According to the microstructure and the model analyses, the increase in the density of precipitates, especially fine Ta-rich particles, are considered to be the main reason for the strengthening due to aging at 823 K for 2000 h. On the other hand, fine TaC precipitates were deduced to be dissolved due to aging at 973 K for 100 h. However, the change in precipitates alone cannot account for the softening occurred due to the aging.