ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
B. Gámez, L. Gámez, M. J. Caturla, E. Martínez, E. del Río, J. M. Perlado
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 314-317
Fusion Materials | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8920
Articles are hosted by Taylor and Francis Online.
The presence of impurities could affect the results observed in pure Ni. In particular, impurities could interact with self-interstitial atoms, which are highly mobile, effectively reducing their mobility. In this work we study the influence of the mobility of self-interstitials on He desorption. The nucleation of He-vacancy complexes is studied depending on the mobility of these self-interstitials in terms of He to vacancy content as well as concentration of these complexes.