ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
S. Gordeev, L. Stoppel, R. Stieglitz, M. Daubner, F. Fellmoser
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 301-308
Fusion Materials | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8918
Articles are hosted by Taylor and Francis Online.
The target assembly of the International Fusion Materials Irradiation Facility (IFMIF) consists of a nozzle, which has to form a stable lithium jet. Therefore, a flat uniform velocity distribution at the nozzle outlets cross-section with a simultaneously low turbulence intensity is required to ensure a safe operation. These boundary conditions necessitate a detailed knowledge on the turbulent flow in contraction nozzles in order identify turbulence models accurately predicting experimental findings within the velocity range of interest for nuclear target and hence can then act as design optimization tool.In order to validate commercially available Computational Fluid dynamic codes (CFD) and the turbulence models incorporated in them a series of experiments using water as model fluid are conducted in the Liquid-Metal-Laboratory KALLA at the research center Karlsruhe. A number of turbulence models with different extensions for the near wall treatment were tested versus the experimentally obtained data. Based on this comparison a hydraulic analysis of the contraction nozzle flow is performed taking into account the relaminarization of the accelerated flow, the occurrence of secondary motions and their impact on the development of the boundary layer. In summary the V2F turbulence model exhibits the best agreement between numerical and experimental data and thus can be considered to be most suitable for the simulation of the accelerated nozzle flow for free surface target applications.