ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
S. Gordeev, L. Stoppel, R. Stieglitz, M. Daubner, F. Fellmoser
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 301-308
Fusion Materials | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8918
Articles are hosted by Taylor and Francis Online.
The target assembly of the International Fusion Materials Irradiation Facility (IFMIF) consists of a nozzle, which has to form a stable lithium jet. Therefore, a flat uniform velocity distribution at the nozzle outlets cross-section with a simultaneously low turbulence intensity is required to ensure a safe operation. These boundary conditions necessitate a detailed knowledge on the turbulent flow in contraction nozzles in order identify turbulence models accurately predicting experimental findings within the velocity range of interest for nuclear target and hence can then act as design optimization tool.In order to validate commercially available Computational Fluid dynamic codes (CFD) and the turbulence models incorporated in them a series of experiments using water as model fluid are conducted in the Liquid-Metal-Laboratory KALLA at the research center Karlsruhe. A number of turbulence models with different extensions for the near wall treatment were tested versus the experimentally obtained data. Based on this comparison a hydraulic analysis of the contraction nozzle flow is performed taking into account the relaminarization of the accelerated flow, the occurrence of secondary motions and their impact on the development of the boundary layer. In summary the V2F turbulence model exhibits the best agreement between numerical and experimental data and thus can be considered to be most suitable for the simulation of the accelerated nozzle flow for free surface target applications.