ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
S. Sato et al.
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 227-231
Tritium, Safety, and Environment | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8907
Articles are hosted by Taylor and Francis Online.
In the previous studies, the calculated TPRs were overestimated by more than 10 % compared with the measured values in the experiment with a neutron source reflector. In order to confirm that these overestimation are found on other reactions, reaction rate distributions are measured on 197Au(n,)198Au and 93Nb(n,2n)92mNb in the ITER TBM mockups with and without a reflector by the activation foil method with DT neutron irradiation experiments. Analyses are performed with MCNP-4C and FENDL-2.1. The ratios of the calculation results to the experimental ones with a reflector are slightly larger than those without a reflector on the reaction rate of 197Au(n,)198Au.