ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Weston M. Stacey
Fusion Science and Technology | Volume 36 | Number 1 | July 1999 | Pages 38-46
Technical Paper | doi.org/10.13182/FST99-A89
Articles are hosted by Taylor and Francis Online.
A linear analysis of thermal instabilities along the magnetic field lines in the plasma edge is used to derive predictive algorithms for the edge density limit for the onset of multifaceted asymmetric radiation from the edge (MARFE) within the last closed flux surface in tokamaks. Calculated MARFE onset density limits for representative impurity and recycling neutral concentrations and representative edge plasma parameters in a model problem exhibit the expected strong dependence on impurity type and concentration at low recycling neutral concentrations. At recycling neutral concentrations greater than ~1 × 10-5, the MARFE onset density limit is found to depend strongly on the recycling neutral concentration and to be relatively independent of impurity type or concentration. Predicted MARFE onset density limits for two DIII-D shots agree reasonably well with experimental data.