ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Kenji Kotoh, Masashi Kawahara, Keisuke Kimura, Kazuhiko Kudo
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 179-183
Tritium, Safety, and Environment | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8898
Articles are hosted by Taylor and Francis Online.
Cryogenic pumps are convenient machinery for handling hydrogen isotopes in fusion fuel processing systems. Not only ultra-vacuum pumps working at such as liquid helium or hydrogen temperature but also sorption pumps using liquid nitrogen are applicable. The latter type is suitable to a means of temporary storage and/or transportation between process units. In the cryogenic pumping, there is an issue that the pressure in a pump is not necessarily identical with the pressure measured in its evacuating vessel in equilibrium, because of an effect of thermal transpiration. Thermal transpiration is important in adsorption isotherms which characterize cryo-sorption pumping. In this study, the effect of thermal transpiration was investigated for He, H2 and D2 in a closed system consisting of a volume at room temperature and a volume at cryogenic temperature, connected together by a simple narrow pipe or a pipe containing baffle plates as thermal shield. The effect is here described by an equation of nominal-distribution function with respect to the pressure measured in the hot end volume. Defining an effective inner diameter for the latter pipe, agreement is shown of characteristic curves for geometrically different pipes. The error-functional curves for H2 and D2 are agreed together. The curve for He is also perfectly approximated but with a constant shift. This shift results in the difference of a molecular property among He, H2 and D2.