ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yasunori Iwai, Toshihiko Yamanishi, Akihiro Hiroki, Masao Tamada
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 163-167
Tritium, Safety, and Environment | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8895
Articles are hosted by Taylor and Francis Online.
The combined electrolysis and catalytic exchange process has been selected for the water detritiation system for the ITER. In the front-end process of tritiated water electrolyzer composed of a solid polymer electrode, ion exchange resin beds are installed for processing effluent ions in the enriched tritiated water from the catalytic exchange column to avoid the deterioration of the solid polymer electrode. The tritium concentration in the circulation resin bed is evaluated to reach 1.09x1015Bq/m3. It is thus important to note the radiation-induced degradation in ion exchange resins. We studied the degradation effects in Amberlite[registered] and Diaion[registered] organic ion exchange resins caused by the irradiation with electron beam up to the integrated dose of 1500kGy. The procedures D2187-94 of the American Society for Testing and Materials were adopted for the evaluation of the water retention capacity, the backwashed and settled density, the salt splitting capacity, and the total exchange capacity of particulate ion exchange resins. A 20% decrease of total exchange capacity of the cation exchange resin, when irradiated up to 1500 kGy at room temperature, has been observed.