ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Yasunori Iwai, Toshihiko Yamanishi, Akihiro Hiroki, Masao Tamada
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 163-167
Tritium, Safety, and Environment | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8895
Articles are hosted by Taylor and Francis Online.
The combined electrolysis and catalytic exchange process has been selected for the water detritiation system for the ITER. In the front-end process of tritiated water electrolyzer composed of a solid polymer electrode, ion exchange resin beds are installed for processing effluent ions in the enriched tritiated water from the catalytic exchange column to avoid the deterioration of the solid polymer electrode. The tritium concentration in the circulation resin bed is evaluated to reach 1.09x1015Bq/m3. It is thus important to note the radiation-induced degradation in ion exchange resins. We studied the degradation effects in Amberlite[registered] and Diaion[registered] organic ion exchange resins caused by the irradiation with electron beam up to the integrated dose of 1500kGy. The procedures D2187-94 of the American Society for Testing and Materials were adopted for the evaluation of the water retention capacity, the backwashed and settled density, the salt splitting capacity, and the total exchange capacity of particulate ion exchange resins. A 20% decrease of total exchange capacity of the cation exchange resin, when irradiated up to 1500 kGy at room temperature, has been observed.