ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Hongsuk Chung, Do-Hee Ahn, Kwang-Rag Kim, Seungwoo Paek, Minsoo Lee, Sung-Paal Yim, Myunghwa Shim
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 141-147
Tritium, Safety, and Environment | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8891
Articles are hosted by Taylor and Francis Online.
Tritiated gas and water should be properly treated to minimize an environmental tritium emission in nuclear fusion research facilities. Tritiated gas is usually treated in two steps: it is first oxidized to a tritiated water vapor by a catalyst and then the vapor is adsorbed in a molecular sieve drier. We have used a 1wt.% Pt/SDBC polymer catalyst and Zeolite 13X for the tritiated gas removal system. We confirmed that the decontamination factor of the equipment was more than 100 under a gas flow rate of 90 liters/hr and at a temperature of 65-80 °C.Furthermore we have developed a tritiated organic liquid treatment process. We have used a 0.5wt.% Pd/Al2O3 catalyst to oxidize an organic liquid. The simulated organic liquid was converted to water by over 99%. We have also developed a small scale CECE (Combined Electrolysis and Chemical Exchange) process by combining an LPCE (Liquid phase Catalytic Exchange) catalytic column with SPE (Solid Polymer Electrolyte) electrolysis. The experimental results of the CECE process produced a decontamination factor of 13-20. We used the electrolyte Nafion 117 which was coated with Pt as a cathode catalyst and IrO2 as an anode catalyst. We also tested a palladium alloy membrane for a purification of the hydrogen in the detritiation process.