ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Peter Titus et al.
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 101-106
Divertor and High Heat Flux Components | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8884
Articles are hosted by Taylor and Francis Online.
The next generation outer divertor target proposed for C-Mod is intended to operate with edge physics behavior that is 'Demo-like', i.e., it will be capable of operating at a bulk tile and structure temperature of 600C. The proposed design exposes a vertical cylinder covered with tungsten lamellae tiles to the divertor heat flux. Heat load variation along the height of the cylindrical target has been specified and is being considered in the tile design. The design must allow for differential radial thermal expansion of the cylindrical structure. It is intended to be toroidally continuous with a high tolerance on axisymmetry to improve alignment with the plasma and limit interactions of disruption induced currents with the toroidal field. Inductively driven axisymmetric disruption currents are calculated using electromagnetic transient simulations previously employed for RF antennas and the cryopump. Disruption-induced halo currents are expected to flow though the structure, which have proved troublesome for the old outer divertor structure. The new toroidally continuous structure will be intrinsically strong with respect to axisymmetric mechanical loads, although the support hardware will also need to be robust to resist movement during non-axisymmetric halo loads. Halo current specifications for the outer divertor have been developed, and halo current paths that minimize loading are "forced" with appropriate use of insulation and grounding straps. Radiative energy transfer to other components in the vessel makes sustained operation of the outer divertor at elevated temperatures difficult.