ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Peter Titus et al.
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 101-106
Divertor and High Heat Flux Components | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8884
Articles are hosted by Taylor and Francis Online.
The next generation outer divertor target proposed for C-Mod is intended to operate with edge physics behavior that is 'Demo-like', i.e., it will be capable of operating at a bulk tile and structure temperature of 600C. The proposed design exposes a vertical cylinder covered with tungsten lamellae tiles to the divertor heat flux. Heat load variation along the height of the cylindrical target has been specified and is being considered in the tile design. The design must allow for differential radial thermal expansion of the cylindrical structure. It is intended to be toroidally continuous with a high tolerance on axisymmetry to improve alignment with the plasma and limit interactions of disruption induced currents with the toroidal field. Inductively driven axisymmetric disruption currents are calculated using electromagnetic transient simulations previously employed for RF antennas and the cryopump. Disruption-induced halo currents are expected to flow though the structure, which have proved troublesome for the old outer divertor structure. The new toroidally continuous structure will be intrinsically strong with respect to axisymmetric mechanical loads, although the support hardware will also need to be robust to resist movement during non-axisymmetric halo loads. Halo current specifications for the outer divertor have been developed, and halo current paths that minimize loading are "forced" with appropriate use of insulation and grounding straps. Radiative energy transfer to other components in the vessel makes sustained operation of the outer divertor at elevated temperatures difficult.