ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
L. Crosatti, D. L. Sadowski, S. I. Abdel-Khalik, M. Yoda, ARIES Team
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 96-100
Divertor and High Heat Flux Components | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8883
Articles are hosted by Taylor and Francis Online.
Extensive experimental and numerical studies of the planar jet impingement concept used in gas-cooled T-tube divertor modules have been previously performed at Georgia Tech.1 The experiments were used to validate the numerical CFD model based on the FLUENT[registered] software package. However, the test module used in those experiments did not duplicate the exact geometry of the T-tube divertor, particularly the single-sided nature of the incident heat flux. In this paper, the thermal performance of a prototypical T-tube divertor module is experimentally and numerically examined. The test module has been designed and constructed to match the geometry, dimensions, material properties, and single-sided heating configuration of the actual T-tube divertor. Experiments were performed using air as the coolant with different values of the incident heat flux. The coolant flow rate and inlet pressure were selected to span the expected range of non-dimensional parameters for the actual helium-cooled T-tube divertor design. The experimental values of the local heat transfer coefficient and pressure drop show good agreement with the numerical (FLUENT[registered] 6.3) predictions. The data obtained in this investigation provide added confidence in the predicted performance of the T-tube divertor concept, and the ability of the FLUENT CFD software package to predict its thermal performance, as well as the thermal performance of other complex gas-cooled high heat flux components.