ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Y. Ueda, H. Kashiwagi, M. Fukumoto, Y. Ohtsuka, N. Yoshida
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 85-90
Divertor and High Heat Flux Components | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8881
Articles are hosted by Taylor and Francis Online.
Simultaneous irradiation effects of He on tungsten blistering with hydrogen and carbon mixed ion beam were investigated. It was found that only 0.1% addition of He ions to 1 keV H and C mixed ion beam (C:0.8-1.0%) reduced (at 473 K) or completely suppressed (at 653 K and 723 K) blister formation. In order to obtain more detailed result, two ion sources were used to irradiate tungsten with H and He ions with different energies. In the He energy of 0.6 keV (1.5 keV H&C),significant blistering was observed, while in the He energies of 1.0 keV and 1.5 keV, blister formation was suppressed. These results suggested that a He bubble layer reduced hydrogen diffusion through the layer. A He bubble size and a volume rate were about 1-2 nm and ~2% at 653 K, respectively. To evaluate T retention in the ITER tungsten wall, this effect should be included.