ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
E. Gayton, L. Crosatti, D. L. Sadowski, S. I. Abdel-Khalik, M. Yoda, S. Malang
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 75-79
Divertor and High Heat Flux Components | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-31
Articles are hosted by Taylor and Francis Online.
The helium-cooled plate-type divertor concept proposed by Malang was designed to accommodate a surface heat load of ~10 MW/m2. This design can potentially reduce the number of modules needed for the divertor by over two orders of magnitude compared with other concepts, thereby significantly reducing coolant delivery system complexity and manufacturing costs. While previous analyses have predicted that the plate design can accommodate heat fluxes of 10 MW/m2, no experimental data have been published to date to validate such analyses. Experiments have therefore been conducted using air as the coolant at Reynolds numbers similar to those proposed for the actual helium-coolant operating conditions on an instrumented test module with cross-sectional geometry identical to the prototypical plate-type divertor. A second test module where the planar jet exiting the inlet manifold is replaced by a two-dimensional hexagonal array of circular jets over the entire top surface of the inlet manifold has also been tested. The thermal performance of both test modules with and without a porous metallic foam layer in the gap between the outer surface of the inlet manifold and the cooled surfaces was directly compared to test the numerical simulations of Sharafat which predict that the metallic foam significantly enhances heat transfer.