ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
L. Crosatti, J. B. Weathers, D. L. Sadowski, S. I. Abdel-Khalik, M. Yoda, R. Kruessmann, P. Norajitra
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 70-74
Divertor and High Heat Flux Components | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-30
Articles are hosted by Taylor and Francis Online.
A modular helium-cooled divertor design based on the multi-jet impingement cooling concept, known as the helium-cooled multi-jet (HEMJ), has been developed at the Karlsruhe Research Center (FZK). Thermal-hydraulic design simulations have shown that the HEMJ divertor can accommodate an incident heat flux of at least 10 MW/m2 with local heat transfer coefficients as high as ~50 kW/(m2K). However, there were no experimental data to validate the calculated thermal performance. An experimental study of the HEMJ divertor was therefore performed at Georgia Tech in collaboration with FZK. An experimental test module duplicating the prototypical HEMJ geometry and material properties was designed, fabricated, instrumented, and tested in an air flow loop at different incident heat flux values. The air flow rate was selected to cover a wide range of Reynolds numbers spanning that for the actual HEMJ, namely 2.1 × 104. The measured temperature distributions and local heat transfer coefficients estimated from these temperature distributions are both in good agreement with numerical predictions of the air-cooled test module performance calculated using FLUENT[registered] 6.2 for all test conditions. This research supports earlier numerical predictions of the thermal performance of the HEMJ design, and provides added confidence in the ability of the FLUENT[registered]CFD package to accurately predict the thermal performance of various gas-cooled plasma-facing components with complex geometry.