ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
L. Crosatti, J. B. Weathers, D. L. Sadowski, S. I. Abdel-Khalik, M. Yoda, R. Kruessmann, P. Norajitra
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 70-74
Divertor and High Heat Flux Components | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-30
Articles are hosted by Taylor and Francis Online.
A modular helium-cooled divertor design based on the multi-jet impingement cooling concept, known as the helium-cooled multi-jet (HEMJ), has been developed at the Karlsruhe Research Center (FZK). Thermal-hydraulic design simulations have shown that the HEMJ divertor can accommodate an incident heat flux of at least 10 MW/m2 with local heat transfer coefficients as high as ~50 kW/(m2K). However, there were no experimental data to validate the calculated thermal performance. An experimental study of the HEMJ divertor was therefore performed at Georgia Tech in collaboration with FZK. An experimental test module duplicating the prototypical HEMJ geometry and material properties was designed, fabricated, instrumented, and tested in an air flow loop at different incident heat flux values. The air flow rate was selected to cover a wide range of Reynolds numbers spanning that for the actual HEMJ, namely 2.1 × 104. The measured temperature distributions and local heat transfer coefficients estimated from these temperature distributions are both in good agreement with numerical predictions of the air-cooled test module performance calculated using FLUENT[registered] 6.2 for all test conditions. This research supports earlier numerical predictions of the thermal performance of the HEMJ design, and provides added confidence in the ability of the FLUENT[registered]CFD package to accurately predict the thermal performance of various gas-cooled plasma-facing components with complex geometry.