ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
K. Munakata, B. Bornschein, D. Corneli, M. Glugla
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 17-22
Technical Paper | Tritium Science and Technology - Tritium Processing, Transportation, and Storage | doi.org/10.13182/FST05-A871
Articles are hosted by Taylor and Francis Online.
One of the design targets for the ITER Tokamak Exhaust Processing system is to suppress the loss of tritium to less than 10-5 g/h into the Normal Vent Detritiation System of the Tritium Plant. The plasma exhaust gas, therefore, needs to be processed with an overall tritium removal efficiency of about 108. Such a high decontamination factor can be achieved by multistage processes. The third step of the three step CAPER process developed at the TLK is based on a so-called permeator catalyst (PERMCAT) reactor, a direct combination of a Pd/Ag permeation membrane and a catalyst bed. In this work, a numerical simulation of the PERMCAT reactor was performed and the result was compared with experimental data.