ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
Teruhisa Takamatsu et al.
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1290-1294
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST05-A867
Articles are hosted by Taylor and Francis Online.
A magnetron discharge as a built-in ion source have studied both experimentally and numerically for a compact discharge-type fusion neutron source called IECF (Inertial Electrostatic Confinement Fusion). With this magnetron discharge, ions are produced in the vicinity of the vacuum chamber (anode) at negative electric potential. Therefore, produced ions are expected to have nearly full energy corresponding to the applied voltage to the IECF cathode but slightly smaller energy preventing them from hitting the anode of the opposite end, eventually improving both fusion reaction rate and ion recirculation life. Also, the magnetron ion source was found to produce ample ion current for maintenance of the discharge. With the optimization of the configuration of the magnetron discharge, further improvement of the fusion reaction rate is found feasible.