ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Transport by Barge and Road: Shipping Crystal River’s Segmented RPV to Disposal
The Optimized Segmentation process patented by Orano Decommissioning Services was successfully implemented for the first time at the Crystal River Unit 3 (CR-3) decommissioning project in Florida [1]. Using this approach, Orano was able to avoid the time- and resource-intensive process of packaging components into numerous standardized waste containers and significantly reduced the required segmentation activities.
Gregory R. Piefer, John F. Santarius, Robert P. Ashley, Gerald L. Kulcinski
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1255-1259
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST05-A860
Articles are hosted by Taylor and Francis Online.
Recent developments in helicon ion sources and Inertial Electrostatic Confinement (IEC) device performance at UW-Madison have enabled low pressure (< 50 torr, 6.7 mPa) operating conditions that should allow the 3He-3He fusion reaction to be observed in an IEC device. An ion source capable of delivering a ~ 10 mA 3He ion beam into an IEC device with minimal neutral gas flow has been designed and tested. Furthermore, a new IEC device that has never been operated with deuterium has been constructed to avoid D-3He protons from obstructing the 3He-3He reaction product spectrum, and to minimize Penning ionization of deuterium by excited helium, which in the past is suspected to have limited the ionized density of He. These developments make it possible to study beam-background 3He-3He fusion reactions with > 300 mA recirculating ion currents.