ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
R. F. Radel, G. L. Kulcinski
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1250-1254
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST05-A859
Articles are hosted by Taylor and Francis Online.
The effect of high temperature (700-1200°C) implantation of deuterium and helium in candidate fusion first wall materials was studied in the University of Wisconsin Inertial Electrostatic Confinement (IEC) device. Tungsten coated TaC and HfC ''foam'', single crystal tungsten, and high-emissivity tungsten coated ''foam'' were compared to previous tungsten powder metallurgy samples studied in the IEC device for the High Average Power Laser (HAPL) program. Scanning electron microscopy was performed to evaluate changes in surface morphology for various ion fluences at temperatures comparable to first wall temperatures. Single crystal tungsten was shown to exhibit less damage than polycrystalline samples at a fluence of 4×1016 He+/cm2. It was found that no significant deformations occur with deuterium implantation up to ~1018 D+/cm2 at 800°C on W-coated TaC and HfC foam samples. However, helium fluences in excess of 6×1017 He+/cm2 show extensive pore formation at 800°C and higher. These changes may have an impact on the lifetime of tungsten coatings on the first walls of inertial and magnetic confinement fusion reactors.