ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
B. B. Cipiti, G. L. Kulcinski
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1245-1249
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST05-A858
Articles are hosted by Taylor and Francis Online.
The D-3He fusion reaction has been used to produce medical radioisotopes using the University of Wisconsin Inertial Electrostatic Confinement (IEC) Fusion Device. The high-energy 14.7 MeV proton generated from the reaction can activate materials for isotope production. The traditional IEC setup has been altered to generate medical isotopes using beam-target D-3He fusion. Beam target D-3He reactions in a thin-walled, water-cooled, stainless steel tube were used to create 13N, an isotope used in Positron Emission Tomography. At a maximum ion energy of 85 keV, 1.0 nCi of 13N was created as a proof of principle experiment. A scaled-up version of this concept may provide for a smaller, less expensive radioisotope generator for future commercial needs.