ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Transport by Barge and Road: Shipping Crystal River’s Segmented RPV to Disposal
The Optimized Segmentation process patented by Orano Decommissioning Services was successfully implemented for the first time at the Crystal River Unit 3 (CR-3) decommissioning project in Florida [1]. Using this approach, Orano was able to avoid the time- and resource-intensive process of packaging components into numerous standardized waste containers and significantly reduced the required segmentation activities.
P. Meekunnasombat, J. G. Oakley, M. H. Anderson, R. Bonazza
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1170-1174
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A845
Articles are hosted by Taylor and Francis Online.
A large, vertical shock tube is used to explore the breakup and mitigation effects of liquid layers expected from the hydrodynamic shock generated in an inertial fusion reaction. Single and multiple layers of water are tested at two Mach numbers, 2.12 and 3.20. X-ray radiography techniques are used to image the breakup of the water layer resulting in a quantitative measure of the mass fraction distribution of water after shock impact. The amount of breakup is increased with the addition of multiple layers and the increased breakup decreases the end wall impulse. The speed of the transmitted shock wave can be reduced by 50% and is a weak function of the number of layers. The peak pressure at the end-wall of the shock tube is significantly increased due to the high impulsive force of the single liquid layer, however this pressure is substantially reduced when multiple layers containing the same mass of water are used.