ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
P. Meekunnasombat, J. G. Oakley, M. H. Anderson, R. Bonazza
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1170-1174
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A845
Articles are hosted by Taylor and Francis Online.
A large, vertical shock tube is used to explore the breakup and mitigation effects of liquid layers expected from the hydrodynamic shock generated in an inertial fusion reaction. Single and multiple layers of water are tested at two Mach numbers, 2.12 and 3.20. X-ray radiography techniques are used to image the breakup of the water layer resulting in a quantitative measure of the mass fraction distribution of water after shock impact. The amount of breakup is increased with the addition of multiple layers and the increased breakup decreases the end wall impulse. The speed of the transmitted shock wave can be reduced by 50% and is a weak function of the number of layers. The peak pressure at the end-wall of the shock tube is significantly increased due to the high impulsive force of the single liquid layer, however this pressure is substantially reduced when multiple layers containing the same mass of water are used.