ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
P. Meekunnasombat, J. G. Oakley, M. H. Anderson, R. Bonazza
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1170-1174
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A845
Articles are hosted by Taylor and Francis Online.
A large, vertical shock tube is used to explore the breakup and mitigation effects of liquid layers expected from the hydrodynamic shock generated in an inertial fusion reaction. Single and multiple layers of water are tested at two Mach numbers, 2.12 and 3.20. X-ray radiography techniques are used to image the breakup of the water layer resulting in a quantitative measure of the mass fraction distribution of water after shock impact. The amount of breakup is increased with the addition of multiple layers and the increased breakup decreases the end wall impulse. The speed of the transmitted shock wave can be reduced by 50% and is a weak function of the number of layers. The peak pressure at the end-wall of the shock tube is significantly increased due to the high impulsive force of the single liquid layer, however this pressure is substantially reduced when multiple layers containing the same mass of water are used.