ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
B. A. Vermillion et al.
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1139-1142
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A839
Articles are hosted by Taylor and Francis Online.
We are performing research and development to increase production quantity and yield for Inertial Fusion Energy targets for laser fusion. A key component of the laser fusion target is an approximately 4 mm diameter foam shell. To facilitate large-scale production, research into optimization of foam shell gelation and hardening times to reduce non-concentricity of the foam shell is underway. Additionally, we are examining methods to modify the current laboratory bench scale process for initial foam shell formation, various fluid exchanges, and sealcoat chemistry into a continuous process in collaboration with Schafer Corporation. The proposed process utilizes porous tubing sections to perform fluid exchanges in a long (200 m-1 km) continuous path of tubing extending from the triple orifice generator currently used to encapsulate and form the foam shell.Real-time process control has been applied to the triple orifice generator to control the diameter of the foam shell. The system makes use of a pair of photodiode sensors in a closed loop feedback control system incorporating a variable speed process pump. Empirical results indicate the process control loop is capable of identifying wet shell diameters to an approximate standard deviation of 80 to 90 m, on par with characterization results indicating true shell diameter standard deviations of 30-80 m.