ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
B. A. Vermillion et al.
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1139-1142
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A839
Articles are hosted by Taylor and Francis Online.
We are performing research and development to increase production quantity and yield for Inertial Fusion Energy targets for laser fusion. A key component of the laser fusion target is an approximately 4 mm diameter foam shell. To facilitate large-scale production, research into optimization of foam shell gelation and hardening times to reduce non-concentricity of the foam shell is underway. Additionally, we are examining methods to modify the current laboratory bench scale process for initial foam shell formation, various fluid exchanges, and sealcoat chemistry into a continuous process in collaboration with Schafer Corporation. The proposed process utilizes porous tubing sections to perform fluid exchanges in a long (200 m-1 km) continuous path of tubing extending from the triple orifice generator currently used to encapsulate and form the foam shell.Real-time process control has been applied to the triple orifice generator to control the diameter of the foam shell. The system makes use of a pair of photodiode sensors in a closed loop feedback control system incorporating a variable speed process pump. Empirical results indicate the process control loop is capable of identifying wet shell diameters to an approximate standard deviation of 80 to 90 m, on par with characterization results indicating true shell diameter standard deviations of 30-80 m.