ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Transport by Barge and Road: Shipping Crystal River’s Segmented RPV to Disposal
The Optimized Segmentation process patented by Orano Decommissioning Services was successfully implemented for the first time at the Crystal River Unit 3 (CR-3) decommissioning project in Florida [1]. Using this approach, Orano was able to avoid the time- and resource-intensive process of packaging components into numerous standardized waste containers and significantly reduced the required segmentation activities.
Gregory A. Moses, John F. Santarius
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1121-1125
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A836
Articles are hosted by Taylor and Francis Online.
The so-called ''threat spectra'' of an inertial fusion energy (IFE) high gain target (neutron, x-ray, and ion energy fraction and particle spectra) are the usual starting point for IFE reactor conceptual design. The threat spectra are typically computed using the same radiation hydrodynamics and thermonuclear burn computer simulation codes used to compute implosion, ignition and burn. We analyze the validity of this model for simulating the expansion of the direct drive IFE target plasma and for computing threat spectra. Particular attention is paid to the collisionality of the expanding plasma.