ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Masumi Okumura, Kazuhisa Yuki, Hidetoshi Hashizume, Akio Sagara
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1089-1093
Technical Paper | Fusion Energy - First Wall, Blanket, and Shield | doi.org/10.13182/FST05-A832
Articles are hosted by Taylor and Francis Online.
In order to apply Flibe as a liquid blanket material, a heat transfer enhancement system is required because the Flibe is a high Prandtl number fluid. The purpose of this study is to visualize the detailed flow fields in the packed-bed tube, which is expected to be utilized for the heat transfer enhancement. The visualization inside the packed-bed tube from various angles is performed by using a PIV system with a refractive index matching technique. Pressure loss characteristics in the packed-bed tube whose sphere diameter is half the length of tube inside diameter are evaluated and it is found that a drag model could be suitable to estimate the pressure loss of the packed-bed tube.