ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Takashi Mutoh, Ryuhei Kumazawa, Tetsuo Seki, Fujio Simpo, Goro Nomura, Tsuyoshi Ido, Tetsuo Watari, Jean-Marie Noterdaeme, Yanping Zhao
Fusion Science and Technology | Volume 35 | Number 3 | May 1999 | Pages 297-308
Technical Paper | doi.org/10.13182/FST35-297
Articles are hosted by Taylor and Francis Online.
Steady-state ion cyclotron range of frequency (ICRF) heating technologies have been developed to heat plasma for >30 min in the Large Helical Device (LHD). Steady-state-operation tests of high voltages up to 40 kV0p for >30 min were carried out on radio-frequency (rf) vacuum feedthroughs and a coaxial transmission line in a test set. Four types of ceramic feedthroughs, each having a 240-mm diameter, were tested. Cone-type alumina ceramic and cylinder-type silicon nitride composite-ceramic feedthroughs produced good performances of 40 kV/30 min and 50 kV/10 s. The others had vacuum leaks when subjected to long-pulse duration. The temperature of the cone-type alumina ceramic feedthrough was measured during the ICRF operations. By using gas-cooling techniques, the temperature increase of the ceramic was substantially reduced and saturated within 20 min. Without any gas-cooling techniques, the temperature increased linearly and did not saturate. Therefore, this approach could not be used for steady-state operation. The rf dissipation on the ceramic was calculated using the ANSYS finite element computer code. It was found that damaged feedthroughs had local high heat spots, which could result in vacuum leaks. A 240-mm-diam water-cooled coaxial transmission line was designed and tested for steady-state operation. Specially designed connector components and Teflon insulator disks were tested. During the test operation, the insulation gases of nitrogen, sulfur hexafluoride, and carbon dioxide were used to compare their insulation capabilities for steady state. For the duration of a 10-s pulse, these gases performed well up to 60 kV0p. However, for steady-state operation, carbon dioxide gas could not withstand voltages >40 kV0p. The connector components of the transmission line performed without problems below 50 kV0p and 1 kA0p for 30-min steady-state operation. The performance of the feedthroughs and transmission line exceeded the specifications for steady-state heating in the LHD.