ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Yamauchi et al.
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1008-1011
Technical Paper | Fusion Energy - Tritium, Safety, and Environment | doi.org/10.13182/FST05-A820
Articles are hosted by Taylor and Francis Online.
Large amount of radioactive erosion and corrosion products are produced in the IFMIF lithium loop in addition to the deuteron-lithium reaction remnant 7Be. An analysis was conducted to estimate the radioactive corrosion products with a design code ACT-4 developed in JAERI, the activation cross sections based on the FENDL library and the IEAF-2001 library, the latest version of nuclear activation data in the intermediate energy range up to 150 MeV. The result says the concentration of the corrosion in lithium is not very large compared with that of 7Be. However, the behavior of the nuclides such as accumulation and detachment on material has not been clarified yet. When the dose rate around the lithium loop was estimated under the condition of 100% plate-out, the value was beyond the acceptable level for the hands-on maintenance near the loop soon after the operation stop. It means that a very efficient cold trap is required so that the 90% activity in the lithium loop is removed.