ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jean Boscary, Masanori Araki, Satoshi Suzuki, Koichiro Ezato, Masato Akiba
Fusion Science and Technology | Volume 35 | Number 3 | May 1999 | Pages 289-296
Technical Paper | doi.org/10.13182/FST99-A82
Articles are hosted by Taylor and Francis Online.
The purpose of the International Thermonuclear Experimental Reactor (ITER) divertor, which is located at the bottom of the vacuum vessel, is to exhaust impurities and their power from the plasma. Divertor plates function to withstand and to remove a steady-state surface heat flux of 5 MW/m2 and a transient peak heat flux up to 20 MW/m2 for 10 s on the side that faces the plasma. These demanding heat loads require active cooling by a pressurized subcooled flow of water as well as the development of a high-performance cooling channel to avoid burnout. Previous experiments showed that a screw tube, which is a tube whose inner surface is machined like a nut, is an efficient means of removing high heat fluxes. New experiments have been carried out with a B 0205 M10 type of screw copper tube. The average inner diameter, i.e., at the midheight of the fin, is 10 mm, and the outer diameter is 14 mm. Different pitches have been investigated: 1.5, 1.25, 1, and 0.75 mm. Incident critical heat fluxes (ICHFs) between 25 and 47 MW/m2 have been reached for local pressures ranging from 0.9 to 2.2 MPa, inlet temperatures from 17 to 33°C, and axial velocities from 3.6 to 14 m/s. ICHF increases as axial velocity increases and depends slightly on local pressure. Experimental results confirm the potentialities of the screw tube as a reliable geometry for fusion cooling tubes.