ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Jean Boscary, Masanori Araki, Satoshi Suzuki, Koichiro Ezato, Masato Akiba
Fusion Science and Technology | Volume 35 | Number 3 | May 1999 | Pages 289-296
Technical Paper | doi.org/10.13182/FST99-A82
Articles are hosted by Taylor and Francis Online.
The purpose of the International Thermonuclear Experimental Reactor (ITER) divertor, which is located at the bottom of the vacuum vessel, is to exhaust impurities and their power from the plasma. Divertor plates function to withstand and to remove a steady-state surface heat flux of 5 MW/m2 and a transient peak heat flux up to 20 MW/m2 for 10 s on the side that faces the plasma. These demanding heat loads require active cooling by a pressurized subcooled flow of water as well as the development of a high-performance cooling channel to avoid burnout. Previous experiments showed that a screw tube, which is a tube whose inner surface is machined like a nut, is an efficient means of removing high heat fluxes. New experiments have been carried out with a B 0205 M10 type of screw copper tube. The average inner diameter, i.e., at the midheight of the fin, is 10 mm, and the outer diameter is 14 mm. Different pitches have been investigated: 1.5, 1.25, 1, and 0.75 mm. Incident critical heat fluxes (ICHFs) between 25 and 47 MW/m2 have been reached for local pressures ranging from 0.9 to 2.2 MPa, inlet temperatures from 17 to 33°C, and axial velocities from 3.6 to 14 m/s. ICHF increases as axial velocity increases and depends slightly on local pressure. Experimental results confirm the potentialities of the screw tube as a reliable geometry for fusion cooling tubes.