ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
L. C. Cadwallader
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 995-1002
Technical Paper | Fusion Energy - Tritium, Safety, and Environment | doi.org/10.13182/FST05-A818
Articles are hosted by Taylor and Francis Online.
The Worker Exposure Failure Modes and Effects Analysis (WE-FMEA) is a new approach to quantitatively evaluate worker risks from possible failures of co-located equipment in the complex environment of a magnetic or inertial fusion experiment. For next-step experiments such as the International Thermonuclear Experimental Reactor (ITER) or the National Ignition Facility (NIF), the systems and equipment will be larger, handle more throughput or power, and will, in general, be more robust than past experiments. These systems and equipment are necessary to operate the machine, but the rooms are congested with equipment, piping, and cables, which poses a new level of hazard for workers who will perform hands-on maintenance. The WE-FMEA systematically analyzes the nearby equipment and the work environment for equipment failure or inherent hazards, and then develops exposure scenarios. Once identified, the exposure scenarios are evaluated for the worker hazards and quantitative worker risk is calculated. Then risk scenarios are quantitatively compared to existing statistical data on worker injuries; high-risk scenarios can be identified and addressed in more detail to determine the proper means to reduce, mitigate, or protect against the hazard. The WE-FMEA approach is described and a cooling system maintenance example is given.