ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Peter H. Titus, Michael Kalish
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 906-910
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A803
Articles are hosted by Taylor and Francis Online.
DOE requirements as outlined in DOE-STD-1020-2002 are followed for determination of the necessity for seismic qualification of the stellarator and its related systems. IBC-2000 is followed for the qualification requirements The NCSX criteria document provides guidance on load combinations. The stellarator presents minimal occupational hazards and hazards to the public. The qualification effort is intended to preserve the viability of continuing the experiment after an earthquake, and to explore the sensitivity of the design to dynamic loading from sources other than normal operation. A response spectra modal analysis has been employed. The seismic model builds on available conceptual design and design models of the vessel, and modular coil. Outer TF and PF coil models and models of the cold mass supports have been generated and added to form a complete model of the stellarator system. Much of the stellarator is robust to resist normal Lorentz forces. Areas sensitive to lateral loads and dynamic application of non-Lorentz loading, include the nested cylinder cold mass support columns, cantilevered vessel ducts, and the radial guides connecting the vessel ducts and modular coil shell. Loads on these structures are quantified, and design adequacy is assessed.