ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Paul B. Parks, Marshall N. Rosenbluth, Sergei V. Putvinski, Todd E. Evans
Fusion Science and Technology | Volume 35 | Number 3 | May 1999 | Pages 267-279
Technical Paper | doi.org/10.13182/FST99-A80
Articles are hosted by Taylor and Francis Online.
Proposed is a new concept for disruption mitigation and fast shutdown in tokamaks: the injection of hydrogen or helium liquid jets. Liquid jets can rapidly cool the plasma to reduce divertor heat loads and large halo current forces while simultaneously raising the density sufficiently to prevent runaway electron generation. Massive ~40- to 100-fold density increases equivalent to ~50 g of deuterium are necessary for this purpose in the International Thermonuclear Experimental Reactor (ITER). It is shown that only two or three simultaneously injected high-velocity (800 to 1200 m/s) jets can easily deliver this amount of fuel within a period of ~20 ms and thus avoid runaway electron buildup during the 50- to 500-ms current quench phase. Optimum jet parameters, such as radius, velocity, driving pressure, and injection time, predicted from a jet ablation/penetration model, lead to an innovative pulsed injector design concept. The design concept is also based on a thermodynamic process path that allows the lowest possible temperature at the nozzle orifice, given the constraint of a high, ~700-atm driving pressure. By having a cold jet exit the nozzle orifice, the potential problem of rapid boiling (flashover) during jet propagation across vacuum space between the nozzle orifice and the tokamak plasma can be overcome. A one-dimensional fluid-dynamic calculation, including finite compressibility, shows that a specially designed liquid Laval nozzle is needed for liquid helium injection because the jet velocity is supersonic (Mach number ~4). This injector concept is being considered for a proposed disruption mitigation experiment on DIII-D.