ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
V. Mertens, C. Aubanel, O. Gruber, M. Kaufmann, G. Neu, G. Raupp, H. Richter, W. Treutterer, D. Zasche, Th. Zehetbauer, ASDEX Upgrade Team, NBI Team, ICRH Team
Fusion Science and Technology | Volume 32 | Number 3 | November 1997 | Pages 459-467
Technical Paper | Plasma Control Issues for Tokamaks | doi.org/10.13182/FST97-A8
Articles are hosted by Taylor and Francis Online.
The International Thermonuclear Experimental Reactor (ITER) must run near operational limits to produce high-performance plasmas that, beyond position and shape control, rely on optimized control of additional plasma parameters. Control of single parameters, such as beta, plasma stored energy, or ion cyclotron resonance heating antenna coupling, has already been reported. Further performance improvements can be achieved by coordinated control of combinations of parameters. These may be specific to the different phases of a discharge, e.g., for radiative boundary concepts. A growing understanding of discharge behavior will lead to the identification of better control scenarios involving both new parameters and control methods. This requires a universal platform into which control algorithms can flexibly be integrated to adapt to interesting discharge scenarios. With the multitude of processes expected to be implemented, management of real-time processes becomes crucial. This paper explains how this issue is raised by the requirement specification of the controller and how it influences design, implementation, and operation of the plasma performance controller. Examples such as the achievement of completely detached H-mode plasmas demonstrate the working method and its effectiveness.