ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Candidates announced for the 2026 ANS national election
Candidates have officially been named to fill six ANS leadership positions with terms beginning in June 2026. Candidates for the one-year term as vice president/president-elect will succeed Mark Peters, who will in turn succeed Hash Hashemian as current ANS president.
V. Mertens, C. Aubanel, O. Gruber, M. Kaufmann, G. Neu, G. Raupp, H. Richter, W. Treutterer, D. Zasche, Th. Zehetbauer, ASDEX Upgrade Team, NBI Team, ICRH Team
Fusion Science and Technology | Volume 32 | Number 3 | November 1997 | Pages 459-467
Technical Paper | Plasma Control Issues for Tokamaks | doi.org/10.13182/FST97-A8
Articles are hosted by Taylor and Francis Online.
The International Thermonuclear Experimental Reactor (ITER) must run near operational limits to produce high-performance plasmas that, beyond position and shape control, rely on optimized control of additional plasma parameters. Control of single parameters, such as beta, plasma stored energy, or ion cyclotron resonance heating antenna coupling, has already been reported. Further performance improvements can be achieved by coordinated control of combinations of parameters. These may be specific to the different phases of a discharge, e.g., for radiative boundary concepts. A growing understanding of discharge behavior will lead to the identification of better control scenarios involving both new parameters and control methods. This requires a universal platform into which control algorithms can flexibly be integrated to adapt to interesting discharge scenarios. With the multitude of processes expected to be implemented, management of real-time processes becomes crucial. This paper explains how this issue is raised by the requirement specification of the controller and how it influences design, implementation, and operation of the plasma performance controller. Examples such as the achievement of completely detached H-mode plasmas demonstrate the working method and its effectiveness.