ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
V. Mertens, C. Aubanel, O. Gruber, M. Kaufmann, G. Neu, G. Raupp, H. Richter, W. Treutterer, D. Zasche, Th. Zehetbauer, ASDEX Upgrade Team, NBI Team, ICRH Team
Fusion Science and Technology | Volume 32 | Number 3 | November 1997 | Pages 459-467
Technical Paper | Plasma Control Issues for Tokamaks | doi.org/10.13182/FST97-A8
Articles are hosted by Taylor and Francis Online.
The International Thermonuclear Experimental Reactor (ITER) must run near operational limits to produce high-performance plasmas that, beyond position and shape control, rely on optimized control of additional plasma parameters. Control of single parameters, such as beta, plasma stored energy, or ion cyclotron resonance heating antenna coupling, has already been reported. Further performance improvements can be achieved by coordinated control of combinations of parameters. These may be specific to the different phases of a discharge, e.g., for radiative boundary concepts. A growing understanding of discharge behavior will lead to the identification of better control scenarios involving both new parameters and control methods. This requires a universal platform into which control algorithms can flexibly be integrated to adapt to interesting discharge scenarios. With the multitude of processes expected to be implemented, management of real-time processes becomes crucial. This paper explains how this issue is raised by the requirement specification of the controller and how it influences design, implementation, and operation of the plasma performance controller. Examples such as the achievement of completely detached H-mode plasmas demonstrate the working method and its effectiveness.