ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
S. Sharafat, N. Ghoniem, B. Williams, J. Babcock
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 886-890
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A799
Articles are hosted by Taylor and Francis Online.
Ceramic foam and cellular materials are being used in a wide variety of industries and are finding ever growing number of applications. Over the past decade advances in manufacturing of cellular materials have resulted in ceramics with highly uniform interconnected porosities ranging in size from a few m to several mm. These relatively new ceramic foam materials have a unique set of thermo-mechanical properties, such as excellent thermal shock resistance and high surface to volume ratios. Based on new advances in processing ceramic foams, we suggest the development of ceramic foams or cellular ceramics for solid breeders in fusion reactor blankets. A cellular breeder material has a number of thermo-mechanical advantages over pebble beds, which can enhance blanket performance, improve operational stability, and reduce overall blanket costs.