ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
N. Hashimoto et al.
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 881-885
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A798
Articles are hosted by Taylor and Francis Online.
To understand the helium retention characteristics and helium bubble distribution in tungsten, 3He(d,p)4He nuclear reaction analysis (NRA) and transmission electron microscopy (TEM) have been performed for two forms of tungsten: single crystal and polycrystalline, implanted up to 1 × 1019 3He/m2 at 850°C and annealed at 2000°C. The NRA results indicated that as-implanted single crystal and polycrystalline tungsten exhibited similar helium retention characteristics. In addition, a flash anneal at 2000°C had no effect on the retention of helium. However, when 1019 He/m2 was implanted into single crystal tungsten in 1000 cycles of 1016 He/m2 each followed by a 2000°C flash anneal, the observed helium yield dropped by 95% compared to 70% for polycrystalline tungsten. The microstructure of single crystal tungsten implanted with 1 × 1019 He/m2 and annealed at 2000°C in a single step showed numerous tiny cavities at a depth of ~1.6 m, while no visible cavities were observed in the 1000 step annealed single crystal. However, in the case of polycrystalline tungsten, a single step annealing led to significant cavity growth at grain boundaries. The reduced He retention suggests a preference for inertial fusion energy armor of single crystal over polycrystalline tungsten.