ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
N. Hashimoto et al.
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 881-885
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A798
Articles are hosted by Taylor and Francis Online.
To understand the helium retention characteristics and helium bubble distribution in tungsten, 3He(d,p)4He nuclear reaction analysis (NRA) and transmission electron microscopy (TEM) have been performed for two forms of tungsten: single crystal and polycrystalline, implanted up to 1 × 1019 3He/m2 at 850°C and annealed at 2000°C. The NRA results indicated that as-implanted single crystal and polycrystalline tungsten exhibited similar helium retention characteristics. In addition, a flash anneal at 2000°C had no effect on the retention of helium. However, when 1019 He/m2 was implanted into single crystal tungsten in 1000 cycles of 1016 He/m2 each followed by a 2000°C flash anneal, the observed helium yield dropped by 95% compared to 70% for polycrystalline tungsten. The microstructure of single crystal tungsten implanted with 1 × 1019 He/m2 and annealed at 2000°C in a single step showed numerous tiny cavities at a depth of ~1.6 m, while no visible cavities were observed in the 1000 step annealed single crystal. However, in the case of polycrystalline tungsten, a single step annealing led to significant cavity growth at grain boundaries. The reduced He retention suggests a preference for inertial fusion energy armor of single crystal over polycrystalline tungsten.