ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
N. Hashimoto et al.
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 881-885
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A798
Articles are hosted by Taylor and Francis Online.
To understand the helium retention characteristics and helium bubble distribution in tungsten, 3He(d,p)4He nuclear reaction analysis (NRA) and transmission electron microscopy (TEM) have been performed for two forms of tungsten: single crystal and polycrystalline, implanted up to 1 × 1019 3He/m2 at 850°C and annealed at 2000°C. The NRA results indicated that as-implanted single crystal and polycrystalline tungsten exhibited similar helium retention characteristics. In addition, a flash anneal at 2000°C had no effect on the retention of helium. However, when 1019 He/m2 was implanted into single crystal tungsten in 1000 cycles of 1016 He/m2 each followed by a 2000°C flash anneal, the observed helium yield dropped by 95% compared to 70% for polycrystalline tungsten. The microstructure of single crystal tungsten implanted with 1 × 1019 He/m2 and annealed at 2000°C in a single step showed numerous tiny cavities at a depth of ~1.6 m, while no visible cavities were observed in the 1000 step annealed single crystal. However, in the case of polycrystalline tungsten, a single step annealing led to significant cavity growth at grain boundaries. The reduced He retention suggests a preference for inertial fusion energy armor of single crystal over polycrystalline tungsten.