ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Kazumi Ozawa, Sosuke Kondo, Tatsuya Hinoki, Kouichi Jimbo, Akira Kohyama
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 871-875
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A796
Articles are hosted by Taylor and Francis Online.
The microstructural evolution of SiC/SiC composites after Si2+ with/without He+ ion irradiation was studied using transmission electron microscopy. The temperature, displacement damage level, and He/dpa ratio were 1273/1673K, 10/100dpa and 0/60appmHe/dpa, respectively. In 10dpa single-ion irradiation, no cavity was detected at 1273 and 1673K. But cavities were observed locally at 1673K, 100dpa. In dual-ion irradiation, cavities were observed at 1673K, 100dpa. Helium bubbles (d<5nm) were formed densely on {111} faulted planes in the fiber and matrix. And lens-shaped cavities (major axis 2a=20-50nm) were formed on grain boundaries in the matrix. The swelling by cavities in CVI matrix is about 0.5% at 80dpa and 0.7% at 130dpa. Loss of PyC layer beneath the irradiated surface was observed (single-ion: about 500nm, dual-ion: about 1 m). And the thickness of the PyC layer expands after single/dual-ion irradiation (single-ion: 12%, dual-ion: 29% increase). But Tyranno-SA/PyC/CVI composites shows showed better microstructural stability than expected at 1673K.