ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Hiroyuki Ogiwara, Akira Kohyama, Tatsuya Hinoki
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 866-870
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A795
Articles are hosted by Taylor and Francis Online.
Reduced activation ferritic/martensitic steels (RAFs) are leading candidates for blanket and first wall of fusion reactors where effects of displacement damage and helium production are important subjects to be investigated. To obtain systematic and accurate information of microstructural response under fusion environment, dual-ion irradiation method was applied. In order to estimate the microstructural response under fusion neutron irradiation environment, ion-beam irradiation was carried out with helium and metallic self ions. The study is focused on JLF-1 single- and dial-ion irradiated up to 60 dpa at 693, 743 and 793 K. The damage rate and helium injection rate were 1.0 × 10-3 dpa/sec and 15 × 10-3 appm He/sec. At 743 K, void cavity structure was observed under dual-ion irradiation where the contribution of void structure on hardening was not so significant. Irradiation hardening and swelling were depended for the case of dual-ion irradiation. It is attempted to quantitatively relate the dislocation and cavities to the irradiation induced hardening.