ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Hiroyuki Ogiwara, Akira Kohyama, Tatsuya Hinoki
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 866-870
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A795
Articles are hosted by Taylor and Francis Online.
Reduced activation ferritic/martensitic steels (RAFs) are leading candidates for blanket and first wall of fusion reactors where effects of displacement damage and helium production are important subjects to be investigated. To obtain systematic and accurate information of microstructural response under fusion environment, dual-ion irradiation method was applied. In order to estimate the microstructural response under fusion neutron irradiation environment, ion-beam irradiation was carried out with helium and metallic self ions. The study is focused on JLF-1 single- and dial-ion irradiated up to 60 dpa at 693, 743 and 793 K. The damage rate and helium injection rate were 1.0 × 10-3 dpa/sec and 15 × 10-3 appm He/sec. At 743 K, void cavity structure was observed under dual-ion irradiation where the contribution of void structure on hardening was not so significant. Irradiation hardening and swelling were depended for the case of dual-ion irradiation. It is attempted to quantitatively relate the dislocation and cavities to the irradiation induced hardening.