ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
E. Diegele, R. Andreani, R. Lässer, B. van der Schaaf
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 829-835
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A789
Articles are hosted by Taylor and Francis Online.
The paper reviews the objectives and the status of the current EU long-term materials program. It highlights recent results, discusses some of the key issues and major existing problems to be resolved and presents an outlook on the R&D planned for the next few years. The main objectives of the Materials Development program are the development and qualification of reduced activation structural materials for the Test Blanket Modules (TBMs) in ITER and of low activation structural materials resistant to high fluence neutron irradiation for in-vessel components such as breeding blanket, divertor and first wall in DEMO. The EU strategy assumes: (i) ITER operation starting in 2015 with DEMO relevant Test Blanket Modules to be installed from day one of operation, (ii) IFMIF operation in 2017 and (iii) DEMO final design activities in 2022 to 2025. The EU candidate structural material EUROFER for TBMs has to be fully code qualified for licensing well before 2015. In parallel, research on materials for operation at higher temperatures is conducted following a logical sequence, by supplementing EUROFER with the oxide dispersion strengthened ferritic steels and, thereafter, with fibre-reinforced Silicon Carbide (SiCf/SiC). Complementary, tungsten alloys are developed as structural material for high temperature applications such as gas-cooled divertors.