ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
M. L. Walker, D. A. Humphreys, R. D. Johnson, J. A. Leuer
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 790-795
Technical Paper | Fusion Energy - Plasma Engineering, Heating, Current Drive, and Control | doi.org/10.13182/FST05-A783
Articles are hosted by Taylor and Francis Online.
The DIII-D tokamak is capable of supporting a wide variety of plasma equilibria because of its relatively large number of coils and their proximity to the plasma. To support its advanced tokamak mission, the DIII-D experimental program continues to push the envelope of this capability, frequently encountering limits imposed by allowable currents in poloidal shaping coils. Violation of current constraints is presently dealt with by operator adjustment of control targets and gains between plasma discharges. At the same time, demands for more precise and stable control have motivated efforts to develop and install advanced multivariable algorithms for control of plasma shape in DIII-D and other devices. There is currently no way to ensure respect of nonlinear current constraints in a multivariable linear controller design and no practical way to manually tune these fully coupled controllers between discharges after installation. Various linear minimization schemes can be implemented to encourage currents to remain within limits, but adherence to these limits cannot be guaranteed by linear methods alone. In this paper, we describe ongoing efforts to provide methods that guarantee currents will not exceed preset limits, and that simultaneously achieve the best obtainable quality of control subject to current limit constraints.