ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yoshihiko Nagamine, Hideki Nakashima
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 62-70
Technical Paper | doi.org/10.13182/FST99-A78
Articles are hosted by Taylor and Francis Online.
A magnetic thrust chamber concept in a laser fusion rocket is suitable for controlling the plasma flow, and it has an advantage in that thermalization with wall structures in a thrust chamber can be avoided. Rayleigh-Taylor instability would occur at the surface of expanding plasma, and it would lead to the degradation of thrust efficiency, which would result from diffusion of the plasma through an ambient magnetic field. A three-dimensional hybrid particle-in-cell code has been developed to analyze the plasma instability in the magnetic thrust chamber and to estimate the thrust efficiency. It is found that the instability would not have serious effects on the thrust efficiency; thrust efficiency in terms of momentum obtained here amounts to 65%. The effects of varying parameters on the thrust efficiency are also studied. The thrust efficiency seemed to reach its maximum value around c = 50 deg, where c is an angle subtended from the initial plasma position at the z axis to the solenoidal coil and its dependence on magnetic field energy produced by the coil is found to be weak for the cases studied here.