ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Hisae Togashi, Kazuhisa Yuki, Hidetoshi Hashizume
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 740-745
Technical Paper | Fusion Energy - Divertor and Plasma-Facing Components | doi.org/10.13182/FST05-A774
Articles are hosted by Taylor and Francis Online.
In a fusion reactor, almost 30% of fusion energy is deposited on plasma facing components. In the divertor region, it is, however, difficult to utilize this energy with conventional cooling techniques based on high velocity flow with highly subcooled cooling. From this viewpoint, the authors have been developing a cooling technique with metal porous media. In this study, in order to attain both the higher cooling performance and the acquisition of high density energy, high heat removal experiments are performed by using homogeneous and functionally graded porous media to estimate their fundamental heat transfer performances. From the experiments with the homogeneous porous media, it is clarified that the cooling performance is not always improved by using finer pore size media. The functionally graded porous media can reduce a pressure loss. Additionally, in case of the functionally graded porous media with the finer pore, the heat transfer coefficient is higher than that obtained in the homogeneous case. As for the optimal design, it is important to consider the degree of vapor development near a heated surface in the porous media and an effective discharge of vapor from the heated region.