ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Hisae Togashi, Kazuhisa Yuki, Hidetoshi Hashizume
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 740-745
Technical Paper | Fusion Energy - Divertor and Plasma-Facing Components | doi.org/10.13182/FST05-A774
Articles are hosted by Taylor and Francis Online.
In a fusion reactor, almost 30% of fusion energy is deposited on plasma facing components. In the divertor region, it is, however, difficult to utilize this energy with conventional cooling techniques based on high velocity flow with highly subcooled cooling. From this viewpoint, the authors have been developing a cooling technique with metal porous media. In this study, in order to attain both the higher cooling performance and the acquisition of high density energy, high heat removal experiments are performed by using homogeneous and functionally graded porous media to estimate their fundamental heat transfer performances. From the experiments with the homogeneous porous media, it is clarified that the cooling performance is not always improved by using finer pore size media. The functionally graded porous media can reduce a pressure loss. Additionally, in case of the functionally graded porous media with the finer pore, the heat transfer coefficient is higher than that obtained in the homogeneous case. As for the optimal design, it is important to consider the degree of vapor development near a heated surface in the porous media and an effective discharge of vapor from the heated region.