ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Panos J. Karditsas
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 729-733
Technical Paper | Fusion Energy - Divertor and Plasma-Facing Components | doi.org/10.13182/FST05-A772
Articles are hosted by Taylor and Francis Online.
The High Efficiency Thermal Shield (HETS) concept was proposed by ENEA for divertor application in the context of the ITER project and as part of the European Power Plant Conceptual Study. The design is modular, and the unit dimensions are of the order of centimeters for limiting mechanical and thermal stresses. This paper presents results of thermal-fluid and structural analyses, with different heat flux loads, fluid pressures and inlet velocities. The fluid analysis shows that the sharp corner flow passage at the point of flow reversal behaves like an abrupt enlargement, leading to considerable pressure losses as compared to the results obtained by rounding the corner. The combination of rounding the sharp corner and flow cross-sectional area expansion, leads to reduced pressure losses, without any degradation of the thermal performance of the component.