ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Transport by Barge and Road: Shipping Crystal River’s Segmented RPV to Disposal
The Optimized Segmentation process patented by Orano Decommissioning Services was successfully implemented for the first time at the Crystal River Unit 3 (CR-3) decommissioning project in Florida [1]. Using this approach, Orano was able to avoid the time- and resource-intensive process of packaging components into numerous standardized waste containers and significantly reduced the required segmentation activities.
Panos J. Karditsas
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 729-733
Technical Paper | Fusion Energy - Divertor and Plasma-Facing Components | doi.org/10.13182/FST05-A772
Articles are hosted by Taylor and Francis Online.
The High Efficiency Thermal Shield (HETS) concept was proposed by ENEA for divertor application in the context of the ITER project and as part of the European Power Plant Conceptual Study. The design is modular, and the unit dimensions are of the order of centimeters for limiting mechanical and thermal stresses. This paper presents results of thermal-fluid and structural analyses, with different heat flux loads, fluid pressures and inlet velocities. The fluid analysis shows that the sharp corner flow passage at the point of flow reversal behaves like an abrupt enlargement, leading to considerable pressure losses as compared to the results obtained by rounding the corner. The combination of rounding the sharp corner and flow cross-sectional area expansion, leads to reduced pressure losses, without any degradation of the thermal performance of the component.