ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
S. G. Durbin, M. Yoda, S. I. Abdel-Khalik
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 718-723
Technical Paper | Fusion Energy - Divertor and Plasma-Facing Components | doi.org/10.13182/FST05-A770
Articles are hosted by Taylor and Francis Online.
The HYLIFE-II conceptual design uses arrays of high-speed oscillating and stationary slab jets, or turbulent liquid sheets, to protect the reactor chamber first walls. A major issue in thick liquid protection is the hydrodynamic source term due to the primary turbulent breakup of the protective slab jets. During turbulent breakup, drops are continuously ejected from the surface of turbulent liquid sheets and convected into the interior of the cavity, where they can interfere with driver propagation and target injection. Experimental data for vertical turbulent sheets of water issuing downwards from nozzles of thickness (small dimension) = 1 cm into ambient air are compared with empirical correlations at a nearly prototypical Reynolds number Re = 1.2 × 105. A simple collection technique was used to estimate the amount of mass ejected from the jet surface. The effectiveness of boundary-layer cutting at various "depths" into the flow to reduce the source term and improve surface smoothness was evaluated. In all cases boundary-layer cutting was implemented immediately downstream of the nozzle exit. Planar laser-induced fluorescence (PLIF) was used to visualize the free-surface geometry of the liquid sheet in the near-field region up to 25 downstream of the nozzle exit. Large-scale structures at the edges of the sheet, typically observed for Re < 5.0 × 104, reappeared at Re = 1.2 × 105 for sheets with boundary-layer cutting. The results indicate that boundary-layer cutting can be used to suppress drop formation, i.e. the hydrodynamic source term, for a well-conditioned jet but is not a substitute for well-designed flow conditioning.