ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
K. Mima et al.
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 662-666
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A762
Articles are hosted by Taylor and Francis Online.
This is the review on the laser fusion research at Institute of Laser Engineering of Osaka University. Since 1996, we have concentrated our efforts on fast ignition laser fusion research. By constructing 100 TW and 1Peta watt lasers, experiments on relativistic laser plasma interactions related to fast ignition and pellet implosion and heating have been carried out. The results indicate that imploded core plasma is heated with relatively high coupling efficiency. According to the above results, we started the FIREX (Fast Ignition Realization Experiment) project for demonstrating ignition and burn with a multi 10kJ short pulse laser. The future prospects of the project are presented in this paper.