ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Transport by Barge and Road: Shipping Crystal River’s Segmented RPV to Disposal
The Optimized Segmentation process patented by Orano Decommissioning Services was successfully implemented for the first time at the Crystal River Unit 3 (CR-3) decommissioning project in Florida [1]. Using this approach, Orano was able to avoid the time- and resource-intensive process of packaging components into numerous standardized waste containers and significantly reduced the required segmentation activities.
M. A. Modesto, E. R. Lindgren, C. W. Morrow
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 650-655
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A760
Articles are hosted by Taylor and Francis Online.
In this work, a preliminary thermal model for the Z-Pinch Power Plant is presented. This power plant utilizes fusion energy to generate electric energy in the GW range. The Z-Pinch Technology consists of compressing high-density plasma to produce X-rays to indirectly heat to ignition a deuterium/tritium fusion capsule. This ignition releases a minimum of 3 GJ every 10 seconds. The thermal energy generated is absorbed by the primary cycle fluid, and it is later used to power a Brayton or Rankine cycle. An advanced heat exchanger is used as the interface between the two cycles. This heat exchanger plays an important role in power plant performance. Three fluids (Flibe, Pb-17Li, and Li) were used for the plant performance analysis. The thermodynamic properties of the selected fluids determine the maximum operating temperature of the power cycles. Model results show that high temperatures (over 1000 °C) are developed in the primary cycle as needed to efficiently run the secondary cycle. The results of the performance parametric study demonstrated that the Brayton cycle exhibits better performance characteristics than the Rankine cycle for this type of application.