ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. A. Modesto, E. R. Lindgren, C. W. Morrow
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 650-655
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A760
Articles are hosted by Taylor and Francis Online.
In this work, a preliminary thermal model for the Z-Pinch Power Plant is presented. This power plant utilizes fusion energy to generate electric energy in the GW range. The Z-Pinch Technology consists of compressing high-density plasma to produce X-rays to indirectly heat to ignition a deuterium/tritium fusion capsule. This ignition releases a minimum of 3 GJ every 10 seconds. The thermal energy generated is absorbed by the primary cycle fluid, and it is later used to power a Brayton or Rankine cycle. An advanced heat exchanger is used as the interface between the two cycles. This heat exchanger plays an important role in power plant performance. Three fluids (Flibe, Pb-17Li, and Li) were used for the plant performance analysis. The thermodynamic properties of the selected fluids determine the maximum operating temperature of the power cycles. Model results show that high temperatures (over 1000 °C) are developed in the primary cycle as needed to efficiently run the secondary cycle. The results of the performance parametric study demonstrated that the Brayton cycle exhibits better performance characteristics than the Rankine cycle for this type of application.