ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
S. S. Yu et al.
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 621-625
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A755
Articles are hosted by Taylor and Francis Online.
We report on an ongoing study on modular Heavy Ion Fusion (HIF) drivers. The modular driver is characterized by ~20 nearly identical induction linacs, each carrying a single high current beam. In this scheme, one of the full size induction linacs can be tested as an "integrated Research Experiment" (IRE). Hence this approach offers significant advantages in terms of driver development path. For beam transport, these modules use solenoids, which are capable of carrying high line charge densities, even at low energies. A new injector concept allows compression of the beam to high line densities right after the source. The final drift compression is performed in a plasma in which the large repulsive space charge effects are neutralized. Finally, the beam is transversely compressed onto the target, using either external solenoids or current-carrying channels (in the assisted pinch mode of beam propagation). We report on progress towards a self-consistent point design from injector to target. Considerations of driver architecture, chamber environment as well as the methodology for meeting target requirements of spot size, pulse shape and symmetry are also described. Finally, some near-term experiments to address the key scientific issues are discussed.