ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
W. R. Meier
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 616-620
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A754
Articles are hosted by Taylor and Francis Online.
Since the completion of the Robust Point Design (RPD) for a heavy ion fusion power plant, progress has been made in addressing key issues and some possible new directions have emerged. Work has continued on thick liquid wall chambers, which are particularly well suited to heavy ion fusion since they allow compact chambers minimizing the standoff for the final focus magnets and thus improving beam focusing on target. Work has continued on HIF indirect-drive targets in an attempt to allow larger spot sizes than the ~2 mm spots required by the baseline target in the RPD. A promising approach is the use of shine shields at both ends of the hohlraum, which allows beams to fill the entire 5-mm-radius target. This larger spot size target design opens the door to other driver and focusing schemes. Work has started exploring a modular driver approach in which many individual accelerators provide the total beam energy on target as opposed to the single accelerator with many (~100) individual beamlets threading common induction cores. Neutralized drift compression and plasma channel focusing are being studied as a way to deliver these high current beams to target. We have also started investigating new chamber designs that would be compatible with this focusing scheme, in particular designs using a vortex flow configuration to establish the thick liquid wall. This paper highlights progress since the last Technology of Fusion Energy (TOFE) Conference.