ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
V. Novak, D. Sadowski, S. Shin, K. Schoonover, S. I. Abdel-Khalik
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 610-615
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A753
Articles are hosted by Taylor and Francis Online.
An experimental and numerical investigation has been conducted to examine the effectiveness of gas/liquid mist as a means of cooling the Electra hibachi structure. The aim is to quantify the effect of various operating and design parameters, viz. gas/liquid combination, gas velocity, liquid mass fraction, liquid atomization nozzle design (i.e. spray geometry, cone angle, and droplet size distribution), and heat flux on mist cooling effectiveness. The data are used to validate a mechanistic model which can be used to predict the hibachi foil's response under prototypical pulsed operating conditions.A fully-instrumented experimental test facility has been designed and constructed. The facility includes three electrically-heated test sections, including a channel with prototypical Electra hibachi dimensions. Water is used as the mist liquid, with air, or helium, as the carrier gas. Three mist generating nozzles with significantly different spray characteristics are used. Values of the local heat transfer coefficient along the channel surface are measured for a wide range of operating conditions. The data indicate that mist cooling can increase the heat transfer coefficients by nearly an order of magnitude compared to forced convection using only the carrier gas. Comparison has been made between the data and predictions of a mechanistic three-dimensional computer program for transient two-phase flow in the channel coupled with heat conduction in the surrounding structure; excellent agreement has been obtained. The results indicate that gas/liquid mist can effectively cool the Electra hibachi structure within the design constraints imposed on circulating power requirements.