ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
V. Novak, D. Sadowski, S. Shin, K. Schoonover, S. I. Abdel-Khalik
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 610-615
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A753
Articles are hosted by Taylor and Francis Online.
An experimental and numerical investigation has been conducted to examine the effectiveness of gas/liquid mist as a means of cooling the Electra hibachi structure. The aim is to quantify the effect of various operating and design parameters, viz. gas/liquid combination, gas velocity, liquid mass fraction, liquid atomization nozzle design (i.e. spray geometry, cone angle, and droplet size distribution), and heat flux on mist cooling effectiveness. The data are used to validate a mechanistic model which can be used to predict the hibachi foil's response under prototypical pulsed operating conditions.A fully-instrumented experimental test facility has been designed and constructed. The facility includes three electrically-heated test sections, including a channel with prototypical Electra hibachi dimensions. Water is used as the mist liquid, with air, or helium, as the carrier gas. Three mist generating nozzles with significantly different spray characteristics are used. Values of the local heat transfer coefficient along the channel surface are measured for a wide range of operating conditions. The data indicate that mist cooling can increase the heat transfer coefficients by nearly an order of magnitude compared to forced convection using only the carrier gas. Comparison has been made between the data and predictions of a mechanistic three-dimensional computer program for transient two-phase flow in the channel coupled with heat conduction in the surrounding structure; excellent agreement has been obtained. The results indicate that gas/liquid mist can effectively cool the Electra hibachi structure within the design constraints imposed on circulating power requirements.