ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
S. I. Abdel-Khalik, M. Yoda
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 601-609
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A752
Articles are hosted by Taylor and Francis Online.
This paper provides an overview of experimental and numerical studies conducted at Georgia Tech to assess the fluid dynamics aspects of liquid protection schemes for fusion energy reactors. The problems described here include: (1) Dynamics of slab jets for thick liquid protection, including the effect of nozzle design, flow conditioning, and boundary layer cutting on jet surface smoothness; (2) Primary turbulent breakup of turbulent liquid sheets and forced thin liquid films, and quantification of the associated hydrodynamic source term; (3) Dynamics of forced films on downward-facing flat and curved surfaces, including film detachment and flow around beam ports; (4) Free-surface topology and drop detachment from downward-facing porous wetted walls; and (5) Thermocapillary effects and associated design constraints for liquid-film-protected divertors and first walls.The experimental data and validated numerical models developed in these studies allow reactor designers to identify design windows for successful operation of liquid-protected first walls and plasma facing components in inertial and magnetic confinement systems.