ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
S. I. Abdel-Khalik, M. Yoda
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 601-609
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A752
Articles are hosted by Taylor and Francis Online.
This paper provides an overview of experimental and numerical studies conducted at Georgia Tech to assess the fluid dynamics aspects of liquid protection schemes for fusion energy reactors. The problems described here include: (1) Dynamics of slab jets for thick liquid protection, including the effect of nozzle design, flow conditioning, and boundary layer cutting on jet surface smoothness; (2) Primary turbulent breakup of turbulent liquid sheets and forced thin liquid films, and quantification of the associated hydrodynamic source term; (3) Dynamics of forced films on downward-facing flat and curved surfaces, including film detachment and flow around beam ports; (4) Free-surface topology and drop detachment from downward-facing porous wetted walls; and (5) Thermocapillary effects and associated design constraints for liquid-film-protected divertors and first walls.The experimental data and validated numerical models developed in these studies allow reactor designers to identify design windows for successful operation of liquid-protected first walls and plasma facing components in inertial and magnetic confinement systems.